PHOTOCHEMICAL 1,3-ACYL MIGRATION IN CYCLIC DIENAMIDES (AZEPINONES)

Hans-Dieter Becker^{*} and Alan B. Turner

Department of Organic Chemistry, Chalmers University of Technology and University of Gothenburg, S-412 96 Gothenburg, Sweden

<u>Abstract</u>: Irradiation of 1,3-dihydro-2<u>H</u>-azepin-2-ones in aprotic solvents gives azabicycloheptenones by intramolecular cycloaddition, but photochemical isomerization in methanol results in 1,3-acyl migration involving cleavage of the amide bond.

Seven-membered heterocycles containing a conjugated diene system readily undergo photochemical valence isomerization to give annelated cyclobutenes.¹ Likewise, irradiation of 1,3-dihydro-2<u>H</u>-azepin-2-ones <u>1</u> in ether or benzene affords azabicycloheptenones <u>2</u> in generally excellent yields.² Recently, however, it was reported that irradiation of an azepinone (<u>1</u>, R=CH₃) in methanol gives rise to an elusive, thermally unstable product characterized by strong ultraviolet absorption (λ_{max} 267 and 368 nm).³ These UV-spectroscopic properties are believed to be consistent with the structure of dienimine <u>3</u>, proposed to be formed by photochemical decarbonylation of the azepinone.

Investigating the photochemical properties of 7-aryl-substituted azepinones <u>4</u>, we find that their valence isomerization in aprotic solvents leading to acetamido-annelated cyclobutenes <u>5</u> is drastically suppressed in methanol. For example, irradiation of <u>4a</u> (0.23 g, high-pressure mercury lamp HPK 125 W, Pyrex, N₂, 12^o) in ether or cyclohexane (75 ml) for 2 h gave the expected valence isomer <u>5a</u> (colorless crystals, m.p. 194⁰) which was isolated in 80% yield.^{4,5} In methanol, by contrast, irradiation of azepinone <u>4a</u> under the same conditions yields only minute amounts of <u>5a</u>. The major product, isolated in 60% yield, was found to be a yellow, crystalline substance (λ_{max} 268 and 371 nm, ε 10,800 and 10,200) whose elemental composition is that of the starting material rather than that of its decarbonylation product of dienimine structure <u>3</u>. The infrared and 270 MHz ¹H-NMR spectral data listed in Table 1 are in agreement with a 1:1 mixture of two isomeric enols of the iminosubstituted cyclopentenone <u>6</u>, i.e. cyclopentadienols <u>7</u> and <u>8</u> (R¹=R²=CH₃). We rationalize the formation of <u>6</u> by regioselective 1,3-acyl migration of photoexcited <u>4</u>. Thus, in this isomerization the cyclic dienamide displays the excited state reactivity of a β,γ -unsaturated ketone.⁶

- 2; a. $K = 01_3;$ $K^{-1} = 0_4 n_9;$ b. $K = 01_3;$ K = n; $K^{-1} = 0_4 n_9$

Table 1	1.	270	¹ H-NMR	spectral	data	of	cyclopentadienols	<u>7a/8a</u>	in	CDC1 ₇
---------	----	-----	--------------------	----------	------	----	-------------------	--------------	----	-------------------

н _а	н _b		ОН	R1	R ²	R	aromatic H
5.44	2.51	(J _{ab} =3 Hz)	11.4	2.64	3.35	0.76, 1.03	7.26, 7.37
5.49	2.63 ^{x)}	(J _{ab} =2.2 Hz)	11.7	2.62	3.63	1.06, 1.29 1.34	(J=2.5 Hz)

 $^{(x)}$ Signal hidden under those of R^1 . Position verified by decoupling

In chloroform solution at room temperature, ⁸ cyclopentadienols <u>7/8</u> are elusive inasmuch as they are spontaneously converted into the thermodynamically stable isomeric imino-substituted cyclopentenone <u>9a</u> (m.p. 123-125°) whose structure, in turn, is supported by the exhibition of a characteristic ABX pattern in its 270 MHz ¹H-NMR spectrum (see Table 2). The NMR spectral properties of the imino-substituted cyclopentenone <u>9b</u> (m.p. 156-157°), obtained⁹ by irradiation of azepinone <u>4b</u>, are in agreement with this structural assignment. Thus, the ¹³C chemical shift of the carbonyl carbon in <u>9b</u> is found at δ 206 ppm downfield from TMS. As for the electronic absorption spectra of imino-substituted cyclopentenones <u>9</u>, intramolecular hydrogen bonding decreases the energy of their longest-wavelength transition. Compound <u>9a</u> (R²=CH₃) is colorless (λ_{max} 295 nm, ε 2,300, in EtOH), while β -hydroxy-substituted imine <u>9b</u> (R²=H) is yellow (λ_{max} 262 and 337 nm, ε 9,600 and 4,400, shoulder at 420 nm, ε 500).

Table	2.	270	MHz	¹ H-NMR	spectral	data	of	imino-substituted	cyc1c	pentenones	9
-------	----	-----	-----	--------------------	----------	------	----	-------------------	-------	------------	---

	^Н а	н _ь	^H x	R^1	R^2	aroma	tic H	R	R	R	R	
<u>9a</u> :	2.79	2.57	2.11	3.30	3.81	6.94	7.36	0.96	1.23	1.28	1.39	
<u>9b</u> :	2.93	2.69	2.35	3.15	15.92	6.88	7.32	1.09	1.19	1.19	1.44	
<u>9b</u> 'x):	2.93	2.64	2.38	3.17	15.66	6.83	7.31	1.06	1.16	1.21	1.43	
	In	all cas	es: J _{ab}	=19 Hz,	J _{ax} =7	Hz, J _{bx} =	=3 Hz. J	arom.H ⁼	2.5 Hz			

x) See Footnote 9

The effect of solvent on the electronic absorption spectra of azepinones $\underline{4}$ probably provides the rationale for the solvent-dependent course of their excited state reactions. In cyclohexane, solvent-solute interactions being negligible, azepinone $\underline{4a}$, for example, has its longest-wavelength absorption maximum at 285 nm (ε 10,700). It seems reasonable to assume that the azepinone resonance structure $\underline{10}$, whose contribution to the electronic ground state has been verified by an X-ray structure analysis of $\underline{4b}$, ⁷ is involved in this transition. Consequently, the photochemical valence isomerization in aprotic solvents leading to $\underline{5}$ may be explicable in terms of the excited state reactivity of a heterocyclic conjugated triene. In methanol, significantly, the longest-

wavelength maximum of 4a is hypsochromically shifted to 279 nm (ϵ 11,900). Most likely, hydrogen bonding of 4a with the solvent localizes the lone-pair electrons on nitrogen, thus favoring contributions of resonance structure <u>11</u> in which the amide bond assumes single bond character, and facilitating the photochemical reaction typical of a β,γ -unsaturated carbonyl compound.

Acknowledgment. Financial support by the Swedish Natural Science Research Council is gratefully acknowledged.

References and Notes

- 1. L.A. Paquette in "Nonbenzenoid Aromatics", Vol. I, J.P. Snyder, Edit., Academic Press, 1969.
- 2. H.-D. Becker and K. Gustafsson, J. Org. Chem., <u>42</u>, 2966 (1977), and references therein.
- 3. J.W. Pavlik and C.A. Seymour, Tetrahedron Lett., 1977, 2555.
- 4. a) Satisfactory elemental analyses were obtained for all compounds isolated.
 - b) UV-spectroscopic analysis of the crude reaction mixture reveals the presence of 7/8 (16%)
- 5. The stereochemistry of azabicycloheptenones <u>5</u> has been verified by X-ray structure analysis in the case of <u>5b</u> (see ref. 7).
- 6. For a comprehensive review of the photochemistry of β , γ -unsaturated carbonyl compounds, see K.N. Houk, Chem. Rev., <u>76</u>, 1 (1976).
- 7. H.-D. Becker, K. Gustafsson, C.L. Raston, and A.H. White, Aust. J. Chem., in press.
- 8. The rate of conversion appears to depend on the quality of the chloroform, probably because the isomerization is subject to acid catalysis. The conversion of 7/8 into 9 also is catalyzed by silica gel/CH₂Cl₂.
- 9. Isolated in 50% yield by chromatography (SiO₂/CH₂Cl₂) of the reaction mixture. No attempt was made to characterize any cyclopentadienol precursors. Two other photo-isomers of <u>4b</u> were obtained in low yield. One of them (yellow crystals, m.p. 160-162°), whose ¹H-NMR data are listed in Table 2 under <u>9b'</u> appears to be either a geometrical isomer of <u>9b</u>, or a conceivable atropisomer. The other photoproduct (colorless crystals, m.p. 190°), is derived from <u>4b</u> by intramolecular addition of the phenolic OH to an olefinic double bond.

(Received in UK 2 October 1979)